Распределение урожайности по хозяйствам региона, имеющим различную форму собственности

Хозяйства (по формам собственности) Количество обследованных хозяйств f Средняя урожайность, ц/га xi Дисперсия уро­жайности в ка­ждой группе Si2
Коллективные Акционерные обще­ства Крестьянские (фер­мерские)
Итого

Решение. Поскольку обследованные хозяйства региона сгруппи­рованы по формам собственности, предельную ошибку средней урожайности определяем по формуле для типической выборки, осуществляемой методом повторного отбора (численность гене­ральной совокупности N неизвестна):

В этой формуле неизвестна средняя из внутригрупповых дис­персий.

Она исчисляется по формуле:

По представленным ранее (см. с. 98) данным Ф (t) для вероят­ности Р =0,954 находим t = 2.

Тогда предельная ошибка выборки, ц/га:

Генеральная средняя: = ± . Для нахождения ее границ вначале нужно исчислить среднюю урожайность по выборочной со­вокупности , ц/га:

Предельная относительная ошибка выборки, %:

Доверительные пределы генеральной средней исчисляем, исхо­дя из двойного неравенства:

Таким образом, с вероятностью 0,954 можно гарантировать, что средняя урожайность зерновых культур по региону будет не менее чем 20 ц/га, но и не более чем 22 ц/га.

Определение необходимого объема выборки. При проектирова­нии выборочного наблюдения с заранее заданным значением допустимой ошибки выборки очень важно правильно опреде­лить численность (объем) выборочной совокупности, которая с определенной вероятностью обеспечит заданную точность ре­зультатов наблюдения. Формулы для определения необходимой численности выборки п легко получить непосредственно из формул ошибок выборки.

Так, из формул предельной ошибки выборки для повтор­ного отбора нетрудно (предварительно возведя в квадрат обе части равенства) выразить необходимую численность выборки:

• для средней количественного признака

(29)

• для доли (альтернативного признака)

(30)

Аналогично из формул предельной ошибки выборки для бес­повторного отбора находим, что

(для средней); (31)

(для доли). (32)

Эти формулы показывают, что с увеличением предполагае­мой ошибки выборки значительно уменьшается необходимый объем выборки.

Для расчета объема выборки нужно знать дисперсию. Она может быть заимствована из проводимых ранее обследований данной или аналогичной совокупности, а если таковых нет, то­гда для определения дисперсии надо провести специальное вы­борочное обследование небольшого объема.



Задача 4.Для определения среднего возраста 1200 студентов факультета необходимо провести выборочное обследование мето­дом случайного бесповторного отбора. Предварительно установле­но, что среднее квадратическое отклонение возраста студентов рав­но 10 годам.

Сколько студентов нужно обследовать, чтобы с вероятно­стью 0,954 средняя ошибка выборки не превышала 3 года?

Решение. Рассчитаем необходимую численность выборки, чел., по формуле бесповторного отбора (6.31), учитывая, что t = 2 при Р = 0,954:

Таким образом, выборка численностью 47 чел. обеспечивает задан­ную точность при бесповторном отборе.

Выборочный метод широко используется в статистической практике для получения экономической информации.

Большую актуальность приобретает выборочный метод в со­временных условиях перехода к рыночной экономике. Изменения в характере экономических отношений, аренда, собственность от­дельных коллективов и лиц обусловливают изменения функций учета и статистики, сокращение и упрощение отчетности. Вместе с тем, возрастающие требования к менеджменту усиливают потреб­ность в обеспечении надежной информацией, дальнейшего повы­шения ее оперативности. Все это обусловливает более широкое применение выборочного метода в экономике.

В отечественной статистике уже накоплен определенный опыт выборочных обследований.


0453671472258614.html
0453759400981105.html
    PR.RU™