Уравнение прямой на плоскости

Прямую на плоскости можно задавать уравнениями разных видов. Для решения задач следует использовать уравнение, наиболее удобное для данной задачи.

Уравнение с угловым коэффициентом:

y = kx + b. (3)

В этом уравнении угловой коэффициент k – это тангенс угла наклона прямой к оси абсцисс. Угол отсчитывается от положительного направления оси абсцисс против часовой стрелки.

Недостаток этого уравнения: им невозможно задать вертикальную прямую x = a.

Общее уравнение прямой:

Ax + By + C = 0. (4)

Этим уравнением можно задать любую прямую. Коэффициенты А, В, С при этом определяются не однозначно, а с точностью до пропорциональности.

Уравнение прямой в отрезках:

.(5)

Здесь знаменатели а и b – это координаты точек пересечения прямой с соответствующими координатными осями. С помощью такого уравнения невозможно задать прямую, проходящую через начало координат или параллельную одной из осей.

Уравнение прямой, проходящей через две заданные точки M1(x1, y1) и M1(x2, y2):

. (6)

В этом уравнении один из знаменателей может оказаться равным 0. Тогда общее уравнение прямой получаем, приравнивая к 0 соответствующий числитель (на другую часть уравнения не обращаем внимания).

Уравнение прямой, проходящей через заданную точку M(x0, y0) с угловым коэффициентом k:

y – y0 = k(x – x0). ( 7)

Каноническое уравнение прямой:

. (8)

Здесь M(x0, y0) – точка, через которую проходит прямая, а (m, n) – направляющий вектор, задающий направление прямой.

Любой из приведенных видов уравнений легко преобразовать в любой другой.


0444434383840235.html
0444522325114702.html
    PR.RU™